Synthetic-lattice enabled all-optical devices based on orbital angular momentum of light
نویسندگان
چکیده
All-optical photonic devices are crucial for many important photonic technologies and applications, ranging from optical communication to quantum information processing. Conventional design of all-optical devices is based on photon propagation and interference in real space, which may rely on large numbers of optical elements, and the requirement of precise control makes this approach challenging. Here we propose an unconventional route for engineering all-optical devices using the photon's internal degrees of freedom, which form photonic crystals in such synthetic dimensions for photon propagation and interference. We demonstrate this design concept by showing how important optical devices such as quantum memory and optical filters can be realized using synthetic orbital angular momentum (OAM) lattices in degenerate cavities. The design route utilizing synthetic photonic lattices may significantly reduce the requirement for numerous optical elements and their fine tuning in conventional design, paving the way for realistic all-optical photonic devices with novel functionalities.
منابع مشابه
Fourier relationship between angular position and optical orbital angular momentum.
We demonstrate the Fourier relationship between angular position and angular momentum for a light mode. In particular we measure the distribution of orbital angular momentum states of light that has passed through an aperture and verify that the orbital angular momentum distribution is given by the complex Fourier-transform of the aperture function. We use spatial light modulators, configured a...
متن کاملFast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters.
The ability to rapidly switch between orbital angular momentum modes of light has important implications for future classical and quantum systems. In general, orbital angular momentum beams are generated using free-space bulk optical components where the fastest reconfiguration of such systems is around a millisecond using spatial light modulators. In this work, an extremely compact optical vor...
متن کاملOptical orbital angular momentum conservation during the transfer process from plasmonic vortex lens to light
We demonstrate the optical orbital angular momentum conservation during the transfer process from subwavelength plasmonic vortex lens (PVLs) to light and the generating process of surface plasmon polaritons (SPPs). Illuminating plasmonic vortex lenses with beams carrying optical orbital angular momentum, the SP vortices with orbital angular momentum were generated and inherit the optical angula...
متن کاملFrogeye, the Quantum Coronagraphic Mask: the Photon Orbital Angular Momentum and Its Applications to Astronomy
We propose to realize an optical device based on the properties of photon orbital angular momentum (POAM) to detect the presence of closeby faint companions in double systems using Laguerre-Gaussian (L-G) modes of the light. We test also the possibility of using L-G modes to build coron-agraph mask. We realized in the laboratory a prototype using a blazed l=1 hologram to simulate the separation...
متن کاملMechanical equivalence of spin and orbital angular momentum of light: an optical spanner.
We use a Laguerre-Gaussian laser mode within an optical tweezers arrangement to demonstrate the transfer of the orbital angular momentum of a laser mode to a trapped particle. The particle is optically confined in three dimensions and can be made to rotate; thus the apparatus is an optical spanner. We show that the spin angular momentum of +/-?per photon associated with circularly polarized lig...
متن کامل